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Abstract: The paper deals with finite element modeling of the rotational motion sensor that uses 

Coriolis effect and vibrating quartz tuning fork to sense angular velocity. The computation model is 
applicable to both studying the performance of measurement system in various modes of operation 
and evaluating the indeterminacy of measurement results due to the parameters’ deviations and 
external disturbances.  
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1 INTRODUCTION  
The development of professional competencies in measurement science and engineering requires 

a systematic understanding of the functional concepts of measurement, model constructing, 
identification, and interpretation of measurement data.  

From educational viewpoint the practical teaching of measurement discipline should be undertaken 
by the design-oriented methods. This implies the use of higher level of abstraction models that deal 
not only with fundamental principles underlying measurement systems but also with principles of 
treatment of deviations and uncertainties based on the analysis of instrument structure and the effects 
of sensitivity to parameters variations and external influences. In many cases the models that are 
formed on basic physical theory and phenomena of the relevant systems should be completed by 
more comprehensive consideration.  

Methods of development and analysis of such models are time consuming ones and require 
special knowledge and approaches to both mathematical modeling and the development of 
pedagogic materials. An example of this attitude could be sensors that include mechanical elements 
to sense a dynamic variable being measured. When analyzing the behaviour of high-performance 
systems it is very important for applications to investigate properties of the system in the presence of 
disturbances of different physical nature, e. g. vibrations. Structural vibration problems present a 
major hazard and design limitation for interpretation of these systems properties and their effect on 
system performance. At the sizing stage of a design process models with simplifying assumptions can 
be applied. But when it comes to a refinement, more accurate techniques, such as models of higher 
order, modal analysis and optimization, consideration of the distributed dynamics effects become 
indispensable.  

The use of new learning technologies, the introduction of computer and network base components 
to teaching methods are enabling tools to creating new pedagogic components by using new 
philosophy of collaboration and new co-working schemes, particularly, along the virtual workshop 
concept. 

Through the setting up knowledge pools and bringing together their competence under the vision 
of “Virtual tools” considerable synergetic effects between the relevant partners can be realized. 

 

2 ANGULAR VELOCITY SENSOR AND ITS MODEL 

Principle of Operation  
The topic describes a computational model of the GyroChip family sensor that uses a 

micromachined quartz element - a vibrating quartz tuning fork - to sense angular velocity. Using the 
Coriolis effect, the rotational motion about the sensor’s longitudinal axis produces a DC voltage 
proportional to the rate of rotation. The sensor has found a wide spectrum of applications in the 
automotive, aerospace, defence, industrial, commercial, and medical industries. The description and 
performance specifications of the sensor are available [1, 2], and on the web site 
http://www.systron.com. 

The sensor consists of a microminiature double-ended quartz tuning fork and supporting structure, 
all fabricated chemically from a single wafer of monocrystalline piezoelectric quartz.  

The use of piezoelectric quartz material simplifies the active element, resulting in exceptional 
stability over temperature and time. The drive tines, which constitute the active portion of the sensor, 
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are driven by an oscillator circuit at a precise amplitude that causes the tines to move toward and 
away from one another at a high frequency (see Fig. 1). 

 
 

 
 
Each tine will have Coriolis force acting on it of: 
 

2 rF m V� � ���                                                                                                                                  (1) 
 
where m = tine mass, V r = instantaneous radial velocity, and � = input rate 
This force is perpendicular to both the input rate and the instantaneous radial velocity. The two 

drives tines move in opposite directions; the resultant forces are perpendicular to the plane of the fork 
assembly and in opposite directions as well. This produces a torque that is proportional to the input 
rotational rate. Because the radial velocity is sinusoidal, the torque produced is also sinusoidal at the 
same frequency of the drive tines, and in phase with the radial velocity of the tine. 

The pickup tines, being the sensing portion of the sensor, respond to the oscillating torque by 
moving into and out of plane, producing a signal at the pickup amplifier. After amplification, those 
signals are demodulated into a DC signal proportional to the sensor's rotation. The output signal of 
the sensor reverses sign with the reversal of the input rate since the oscillating torque produced by 
the Coriolis effect reverses phase when the direction of rotation reverses. 

The sensor will generate a signal only with rotation about the axis of symmetry of the fork. That is 
the only motion that will, by Coriolis sensing, produce an oscillating torque at the frequency of the 
drive tines.  

3 LUMPED-PARAMETERS MODEL  
The sensor representation given allows definition of organic components of a sensor and 

describes their qualities and interactive behavior. Having determined a physical effect and the 
possibility of a sensing technique, an adequately formulated models enable existing systems to be 
studied in modes of operation in which they may be called to provide and allow the modeling process 
to better simulate the system by providing numerical understanding. 

The simplest lumped-parameters model of the sensor is presented in Fig. 2. It contains a mass 
able to vibrate in Ox and Oy directions independently. The system is mounted inside of a frame the 
angular velocity of which is being measured. The coupling between the vibration in the two directions 

Fig. 1 
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takes place because of the Corriolis acceleration that is directed along Oy as a consequence of the 
rotation of the frame about Oz and the velocity of the mass along Ox.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The dynamic equation of the system in Fig. 2 can be presented as 
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where ( ), ( ), , , ,x t y t x y x y� � �� �� – correspondingly are: displacements, velocities and accelerations of 

the mass in Ox and Oy directions, 
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natural frequencies of vibrations along Ox and Oy directions, f̂  – excitation force amplitude along 
Ox, �  - excitation frequency, �  - angular velocity of the frame. The skew-symmetric terms �  and -
�  present the gyroscopic part of the matrix and take into account the Coriolis inertia forces. Here we 
neglect the spin-softening effects caused by the centripetal inertia forces as vibration displacements 
of the mass are very small. System (2) is linear one and the harmonic response amplitudes can be 
easily obtained.  

The main properties of he system can be commented by using relationships in Fig.3 and Fig. 4.  
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Fig. 2 
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Fig. 3 presents the amplitude against excitation frequency relationships (AFCH) at different values 
of the ratio of natural frequencies /y x� � . By choosing the appropriate value of /y x� �  the AFCH of 
Oy vibrations has a plateau, which defines the excitation frequency range ensuring the steady level of 
the response enabling to keep the excitation frequency in the vicinity of resonance.  

If for the above mentioned example system having the damping ratio 0.02 we select the natural 
frequency ratio /y x� � =1.03, the relationship of response amplitudes (along Oy) and phases against 
the angular velocity of the rotation of the frame is presented in Fig .4.  

In the range of angular velocities 0.01 0.01x x� �� � � �  nearly linear relationship can be 
observed. The reverse of the direction of the angular velocity leads to the immediate reverse of the 
sign of the phase of Oy vibrations. 

4 FINITE ELEMENT MODEL 
Investigating the vibrations by means of the finite element model can considerably facilitate the 

understanding of the operation specifics of the sensor and the quantitative evaluation of the 
relationship of the output signal against the angular velocity of the outer frame.  

The tuning fork is a vibrating piezoelectric plate of a complex geometric shape the side surfaces of 
which are covered by electrodes enabling to create an electric field inside of the material. In this 
practical situation the electric field created in the material may be considered as being prescribed, so 
the piezoelectric phenomena in the plate are governed by the single linear piezoelectricity equation as 

 
� � � � � �� �;Ec e E� �� �� �� �  (3) 

 
where � �� ,� �� - vectors containing the components of elastic stress and strain, � �E - vectors 

containing the components of the electric field, Ec� �� �  - stiffness tensor under constant electric field, 

� �e - piezoelectric stress tensor. 
As relative displacements of the tuning fork with respect to the rigid rotating frame are being 

considered, the full acceleration { } { } { } { } { }F N T Ca a a a a� � � � is being used in the virtual work equation 
of the finite element as 

 
{ } { } { } { } { } { },

T T T
F

V V
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where symbol �  denotes the virtual quantity, { } [ ]{ }u N U� - displacement vector of  a particle 

inside the finite element expressed in terms of the form function matrix [ ]N  and the nodal 
displacement vector { }U , �  - density of the material, { }R - vector of nodal interaction forces, { }a - 
relative acceleration with respect to the rotating frame;{ }Na , { }Ta  normal and tangential accelerations 
due to the rotation of the frame; { }Ca  - Coriolis acceleration. 

The dynamic equation of the finite element of the tuning fork is obtained as 
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excitation forces caused by the piezoelectric effect, {X} – vector of nodal coordinates of the finite 
element.  

In order to analyse vibrations of the tuning fork in terms of slowly varying amplitudes the time 
averaging method is being used. For harmonic vibration of the structure the time-averaged equation 
reads as  
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where 2

1 2[ ( , )] [ ] [ ] [ ]K K K K� � � �� � �� ; 1[ ( )] [ ] [ ] 2 [ ]C M K C� � � �� � �
�  - structural matrices, ,� � - 

coefficients obtained from the known value of the dynamic amplification factor of the vibrating tuning 
fork, � - harmonic excitation frequency, � � � �( ) , ( )s cU t U t  - sine and cosine components of the time 

varying response amplitude, � � � �,s c
F F� � - sine and cosine amplitudes of the excitation vector 

2
1 2{ } { } [ ]{ } [ ]{ }F F K X K X� �� � �� .  

Given the input of the rotation of the frame as ( ), ( )t t� � , the output in terms of the time-varying 
amplitudes is being obtained by integrating equation (6) numerically.  

The quartz tuning fork has a number of modes of vibration from which only two essentially different 
modal shapes are of interest for the angular velocity sensor application.  

 
 

The mode shapes displayed on Fig. 5 present vibrations of the quartz plate in two perpendicular 
planes xOz and yOz. If the frame does not rotate, only the (b) vibration mode is being excited by 
applying the high frequency alternating voltage to plane surfaces of the quartz chip. The vibrations of 
the (a) mode are obtained if angular velocity is supplied to the frame.  

As it can be seen from Fig. 5, the natural frequencies ratio of both modes are not close to each 
other, so the excitation frequency should be selected closer to the natural frequency of the (a) mode, 
providing the vibration level proportional to the angular velocity of the frame.  

 

 
   (a)       (b) 
 

Fig. 5 
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Fig. 6
 
The amplitude frequency characteristics of the vibration at several different values of the angular 

velocity are presented in Fig.6. By selecting appropriate geometrical shape of the chip the natural 
frequencies of the both above mentioned modes can be obtained close to each other, and the 
amplitude-frequency relationships close to those presented in Fig.3 can be obtained.  

The model consisting of piezoelectric frame elements has been programmed in ANSYS, FOTRAN 
and MATLAB. The reason of application several different programming environments was as follows. 
The finite element model of the structure and to find modal solution is convenient and easy to perform 
in ANSYS. However, the ANSYS program does not allow obtaining the harmonic vibration response 
of the rotating structure. Therefore the structural stiffness and mass matrices have been printed to 
files and taken into a FORTRAN program that was written to perform calculations by using the above-
presented formulae. MATLAB has been used to make the necessary plots.  

The model is able to take into account geometrical inaccuracies, material parameter instabilities, 
finite mobility of fixation zones, etc., and to perform quantitative investigation of the indeterminacy of 
measurement results.  

Software tools developed are available on the web site: 
 http://www.ktu.lt/en/index1.html/science/gyrochip  
The demonstration files *.avi that present the modal shapes of the tuning fork vibration should be 

replayed by the Media player.  
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